

Deprecation of

IALs

Contents

Introduction .. 2

Moving forward .. 2

Creating a new view in a customization project using IFS Developer Studio 3

Working with existing IAL objects ... 6

Quick Information Sources based on IAL views .. 6

Quick Reports based on IAL Views ... 8

Pros and cons of using customizations over IAL ... 12

Conclusion ... 12

Deprecation of
Information Access Layer (IAL)

INTRODUCTION
The purpose of the Information Access Layer (IAL) was to make the information in the application easier

to find by defining several IAL objects that expose information in the application. IAL Object Developer

(a window in IFS enterprise explorer) was used to create new IAL objects, where you could define a SQL

select statement as the definition of the IAL object.

However, with the new architecture and the introduction of IFS Aurena, there have been changes to how

client tier applications access entities in the database. Native OData-based RESTful APIs have been

introduced across the entire suite of IFS Applications to access information. Moreover, accessing

database objects directly from the client tier is deprecated in the new architecture.

Solutions like IAL objects which define SQL statements directly from the client application and deploy

them as new objects into the database are not recommended in the new architecture. The backend

database schema is encapsulated within OData RESTful APIs and knowledge about the database entities

are not exposed to the client layer.

Due to these reasons IAL Object Developer and IAL Configuration windows will be deprecated from

IFS Cloud 21R1. It will still be available in the Aurena client released with 21R1 but will be removed in

future releases. In addition to IAL Objects, other tools and functionalities which uses direct SQL queries in

client layer will also gradually adapt to different mechanisms to access data; examples are SQL data

sources in Lobby, SQL statement type quick reports etc.

MOVING FORWARD

IAL objects are mainly used in quick reports, integrations to 3rd party systems, Lobbies, as a source for quick

information sources and a few other purposes which are not in scope of this document. The above usages can be

broadly classified into three main use cases described below. Each of these main use cases will be addressed

and solved differently in the future.

1. The use of IAL objects to create a ‘named query’ that can be used later by a customer as a basis for

quick reports, lobbies etc.

• This will be addressed in the future with the introduction of a ‘Query Designer’ tool targeting

non-technical users to self-service a ‘named query’ using our entity model as a base.

2. The use of IAL objects to present the underlying transactional data in a way that is optimized for

BI, data warehousing and reporting purposes.

• The existing Information Source framework can be used for this purpose. Defining

information sources is a developer task and will need developer tooling.

3. The use of IAL objects as one of several ways to provide self-service customization for customers

instead of ordering a modification from IFS.

• In the long term, there will be new tooling introduced to support self-service capabilities

for lightweight customization. In the short term, this use case should be considered as a

new customization requirement and therefore needs to be handled in IFS Developer

Studio. It is recommended to create a new view in a customization project in IFS

Developer Studio in order to extract information from IFS Applications. The steps to

create a view using IFS Developer Studio are described here >>.

With IFS Cloud 21R1 every customer is expected to have a ‘Customer Solution Repository’ that stores all their

customizations and configurations that they are responsible for. The Customer Solution Repository also enables a

https://developer.ifs.com/
https://developer.ifs.com/

Deprecation of
Information Access Layer (IAL)

clear separation of the “as supported by IFS” and “as delivered to customers” aspects of a solution. Configuration

and customization are the customers’ responsibility, regardless of whether they self-serve or buy a service from

IFS consulting or from a partner to do the work. Most customers will achieve this by using the IFS Lifecycle

Experience ‘Build Place’ as a service from IFS.

CREATING A NEW VIEW IN A CUSTOMIZATION PROJECT USING IFS
DEVELOPER STUDIO

The following steps describe how to create a new view in a customization project. Please refer the Base Server

Development for Application Core course by IFS Academy for any pre-requisite knowledge on how to work in IFS

Developer Studio.

1. Locate the existing *.IAL file and extract the select statement from the IAL view definition or

prepare and test your SQL statement using IFS developer studio.

2. Load the customization project in IFS Developer Studio or create a new customization project in

IFS Developer Studio.

3. Choose the Module and the Entity that best relate to the IAL view definition

4. Customize the entity by using the Customize this option available in the entity level. It

will generate _cust layer files which will enable you to customize selected entity.

https://ifs.sabacloud.com/Saba/Web_spf/EU2PRD0185/app/shared;spf-url=common/ledetail/cours000000000003480
https://ifs.sabacloud.com/Saba/Web_spf/EU2PRD0185/app/shared;spf-url=common/ledetail/cours000000000003480

Deprecation of
Information Access Layer (IAL)

5. Create a new view by providing the select statement of the IAL view (extracted in step1) as the

query in the new view. Use the *.views file in Cust layer for this step.

Deprecation of
Information Access Layer (IAL)

Since IAL view is deployed into a different database schema, there could be references to the

application owner’s schema in the IAL view definition (see the parts highlighted in IFSAPP. in

above image). Remove these references from the select statement (remove IFSAPP. sections in

this case)

6. Deploy the views into the environment using developer studio options.

Deprecation of
Information Access Layer (IAL)

WORKING WITH EXISTING IAL OBJECTS

All existing IAL objects and their underlying views will remain without any change when you upgrade to

21R1 and upwards. Different types of reports and integrations which access those existing IAL views will

also work without any issues in most cases.

 If an existing IAL view gets invalidated due to changes to the underlying database schema, it can be

updated it using IAL Object Developer or replace the IAL with a new view definitionIn the case of the

latter, it is required to extract the definition of the IAL object into a new view definition. Next, it is required

to modify the objects that consume the IAL object to refer the new view instead of the invalidated IAL

object. A few example cases are described below.

Quick Information Sources based on IAL views

It is possible to create a quick information source based on an IAL view. The existing quick information

sources that are based on an IAL view will remain after the upgrade. In most cases, the Business

Reporter reports created using such quick information sources will also work without any issues.

However, if an IAL gets invalidated due to changes in the underlying table definitions referred by the IAL

definition, and there is a desire to move away from lALs, it is possible to migrate the IAL view definition

into an ordinary view and to change the quick information source view to refer to that new view. It could be

done in following steps.

Creating a new view in customization project

Refer this section for creating a new view definition >>

This will create a new view that contains a similar definition to the IAL object. Next it is required to

change the quick information source (QIS) to refer to the newly created view.

Changing QIS to refer new view instead of IAL

1. If you already have a QIS definition exported to a Metadata_XXX.ins file and if it is available

in the customer’s solution repository you can proceed to step 4. Otherwise it is highly

recommended to have information sources metadata available in the customers solution

repository using the below steps

2. Navigate to the Information Sources page in Aurena client.

3. Select the information source and click Export Metadata button. It will generate the Metadata

file which should be checked in to the customers solution repository.

Deprecation of
Information Access Layer (IAL)

4. Open the Metadata file for the information source.

5. Change value of the VIEW_STD_OL variable to the newly created view name.

6. Deploy the file.

Deprecation of
Information Access Layer (IAL)

Now you have changed the view reference of the QIS to refer to the newly created view. All Business

Reporter reports based on this QIS will not require any further modifications to them.

Quick Reports based on IAL Views

The existing reports created using IAL Views will not require any modifications.

However, if an IAL gets invalidated due to changes to the underline table structure and there is a desire to

move away from the usage of IALs, it is possible to migrate IAL view definition into ordinary view and to

change the quick report definition to refer the new view. It could be done in following steps.

Deprecation of
Information Access Layer (IAL)

Creating new view in customization project

Refer this section for creating a new view definition >>

This will create a new view that contains a similar definition to the IAL object. Next it is required to

change the quick report to refer the newly created view.

Changing Quick Report to refer new view instead of IAL

SQL Statement and Query Builder Quick report types

1. Navigate to Quick Report Details page in Aurena client and query for the quick report to change.

Deprecation of
Information Access Layer (IAL)

2. Edit the Query in the Query details section providing a reference to newly created view instead of

IAL view.

Deprecation of
Information Access Layer (IAL)

Crystal Reports quick report type

1. Open report in Crystal Report Designer

2. In Crystal Report Designer menu options go to Database -> Set Database Location option

3. Change the data source to newly created view by selecting the current view (IAL view) and

choosing the new view to replace it with. Then click Update.

Deprecation of
Information Access Layer (IAL)

PROS AND CONS OF USING CUSTOMIZATIONS OVER IAL

IALs View as Customizations

Easy and quick deployment of object into customer

database (+)

Deployment takes time. Needs to come through

delivery (-)

No need to have knowledge about IFS Developer

Studio (+)

IFS Developer Studio knowledge required (-)

Need to use different tools for develop the select

query and for deployment (-)

Could use IFS Developer Studio for development and

deployment (+)

IALs are not part of the build process (-) Customizations are included in the build process (+)

IALs are not part of customers solution repository.

Therefore, it’s not visible for IFS consultant or

partners (-)

Customizations are included in customer solutions

repository (+)

Additional steps needed in application upgrade to

deploy IALs (-)

No additional steps needed. Upgrades and related QA

activities can be included in the build process with the

possibility of future automation (+)

CONCLUSION
The IAL concept has been used for a very long time in IFS Applications. Therefore, it has been used for many

different purposes in each customer installation. With IALs it was possible to deploy objects dynamically into the

database (including the production database). However, these objects are not part of the content delivery pipeline

or the IFS Applications build process. The knowledge about these objects are hidden from IFS Support and

partners because these objects are not part of the customer’s solution repository. Therefore, it is hard to predict

the impact on these objects during upgrades and additional steps need to be taken to deploy these objects during

application upgrades.

Going forward we want to move all configurations and integrations to be on the ‘application model and new APIs’

level rather than database / PLSQL API / view / table level. That move is necessary in order to significantly move

the needle on enabling customers to both tailor/configure their solution and be more evergreen and for us to run

efficiently in the cloud and open the door to data not always being in Oracle tables and logic not always being in

PLSQL. These changes are necessary for our product to be long term viable and fit for the world we live in. All

these changes together with their replacement solutions will not materialize in a single release, but the direction in

which we must move is clear.

