Get Model Statistics¶
Returns the status and other details of a Machine Learning Model.
Prerequisite is to have a Machine Learning Model defined and deployed and a dataset record set up in Machine Learning Models page.
The method accepts the following parameters:
- response_, out parameter of type CLOB, to which the response will be written.
- dataset_id_, required parameter to specify the Dataset ID for the Machine Learning Model.
- response_format_, optional parameter to specify the response format. Possible values are 'XML', 'JSON' and 'IFS_MESSAGE'. If not specified 'IFS_MESSAGE' will be used as the default format.
BEGIN
Ml_Util_API.Get_Model_Statistics(
response_ => :response_, -- Clob parameter to accept response data.
dataset_id_ => :dataset_id_, -- Dataset ID for the Machine Learning Model.
response_format_ => 'XML'); -- Response format ('XML' / 'JSON' / 'IFS_MESSAGE').
END;
For the above call, the response may look as following. The response may vary depending on the IFS Planning & Scheduling Optimization (PSO) version being used. For more details about retrieving model statistics please see the PSO Machine Learning Guide and the PSO Interface Guide.
<DsMachineLearning xmlns="http://tempuri.org/DsMachineLearning.xsd">
<ML_Model>
<id>Machine_Learning_Demo_Model</id>
<feature_id>feature_to_predict</feature_id>
<update_datetime>2021-03-18T12:00:00+00:00</update_datetime>
<model_status_id>10</model_status_id>
<algorithm>DecisionTree</algorithm>
<problem_type>Classification</problem_type>
</ML_Model>
<ML_Model_Range>
<id>0</id>
<feature_id>feature_to_predict</feature_id>
<value>WON</value>
<active>true</active>
</ML_Model_Range>
<ML_Model_Range>
<id>0</id>
<feature_id>input_feature_1</feature_id>
<value>ABC</value>
<active>true</active>
</ML_Model_Range>
...
<ML_Model_Score>
<id>f1_macro</id>
<value>0.774174337284988</value>
</ML_Model_Score>
<ML_Model_Score>
<id>f1_weighted</id>
<value>0.831843645620681</value>
</ML_Model_Score>
<ML_Model_Score>
<id>iterations</id>
<value>51</value>
</ML_Model_Score>
...
<ML_Model_Cleaning>
<id>e02c8e395d40457ba8336f31f2b02bd7</id>
<feature_id>input_feature_1</feature_id>
<label>OTHER</label>
<cleaning_type_id>label_counts_too_low</cleaning_type_id>
</ML_Model_Cleaning>
</DsMachineLearning>
Tip: The IFS Message response format ('IFS_MESSAGE') allows using existing methods in Message_SYS package to handle the response which may be simpler to use in the PL/SQL code than 'XML' or 'JSON'.